Exam Probability and Measure (WBMA024-05) Monday June 19 2023, 15.00-17.00

This exam consists of 3 exercises all with subquestions. You can get 90 points in total and the grade for this written exam is obtained through

$$
1+\frac{\text { obtained points }}{10}
$$

The grade for this written exam contributes 60% to the final grade of the course.
Write your name and student number on every page you hand in and number the pages.
Throughout the exam $\mathbb{N}=\{1,2, \cdots\}$ are the natural numbers. \mathcal{B} is used for the Borel σ-algebra on \mathbb{R}.
Partial Answers may be worth points!!
Exercises with a $*$ are expected to be the hardest ones of this exam.

1. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, where the σ-algebra \mathcal{A} is generated by the finite partition $\mathcal{P}=\left\{A_{1}, A_{2}, \cdots, A_{r}\right\}$ of Ω. Let $f: \Omega \rightarrow \mathbb{R}$ be an $(\mathcal{A}, \mathcal{B})$-measurable function. Show that there exist $\alpha_{1}, \cdots, \alpha_{r} \in \mathbb{R}$, such that f may be written as

$$
f=\sum_{i=1}^{r} \alpha_{i} \mathbb{1}_{A_{i}} .
$$

That is, show that f is constant on the separate elements of \mathcal{P}.
(15pt)
2. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, with $\mu(\Omega)=\infty$ and let $f: \Omega \rightarrow \mathbb{R}$ be an $(\mathcal{A}, \mathcal{B})$ measurable function. Assume $f \in \mathcal{L}^{p}(\Omega)$ for all $p \in[1, \infty]$ and that $\|f\|_{\infty}>0$.
a) Provide the definitions of $\|f\|_{\infty}$ and $\|f\|_{p}$.
b) Show that $\|f\|_{\infty} \leq \liminf _{p \rightarrow \infty}\|f\|_{p}$.

Hint: Take the integral of some useful function over $\Gamma=\{\omega \in \Omega:|f(\omega)|>M\}$, where $M \in\left(0,\|f\|_{\infty}\right)$. Relate this integral to $\|f\|_{\infty}$ and $\|f\|_{p}$ for given finite p.
c) Formulate Hölder's inequality.
$\left.\mathbf{d}^{*}\right)$ Show that $\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}$.
Hint: Show that $\|f\|_{p} \leq\left(\|f\|_{1}\right)^{1 / p}\left(\|f\|_{\infty}\right)^{1-1 / p}$ and deduce that $\lim \sup _{p \rightarrow \infty}\|f\|_{p} \leq$ $\|f\|_{\infty}$. Combine this with part b).
3. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and let $A_{n} \in \mathcal{A}$ for $n \in \mathbb{N}$, such that

$$
\mathbb{P}\left(\bigcap_{i \in \mathcal{I}} A_{i}\right)=\prod_{i \in \mathcal{I}} \mathbb{P}\left(A_{i}\right) \quad \text { for all finite } \mathcal{I} \subset \mathbb{N}
$$

That is, the A_{i} 's are mutually independent. Let

$$
\begin{aligned}
& A=\left\{\omega \in \Omega: \omega \in A_{i} \text { for infinitely many values of } i\right\} \\
& \qquad=\left\{\omega \in \Omega \text { for all } n \in \mathbb{N} \text { there is an } i \geq n \text { such that } \omega \in A_{i}\right\} .
\end{aligned}
$$

a) Show that $A \in \mathcal{A}$.
b) Show that if $\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty$, then $\mathbb{P}(A)=1$.

Hint: You may use $1-x \leq e^{-x}$ for all $x \in \mathbb{R}$.
Let C be a circle with circumference 1 (i.e. with radius $1 /(2 \pi))$. One by one randomly chosen closed arcs (on C) denoted by $I_{i}(i \in \mathbb{N})$ of respective lengths ℓ_{i} are colored red. Assume further that $1>\ell_{1} \geq \ell_{2} \geq \cdots$. Denote the midpoint of I_{i} by x_{i}. The x_{i} are chosen independently and uniformly on C. Let S be the part of the circle that is colored red. That is,

$$
S=\cup_{i=1}^{\infty} I_{i}
$$

Note that the uniformity of the x_{i} 's implies that for every $c \in C$ and $i \in \mathbb{N}$ we have $\mathbb{P}\left(c \in I_{i}\right)=\ell_{i}$. Define

$$
k_{n}=2^{n+1} \times n!\quad \text { and } \quad K_{n}=\sum_{i=1}^{n} k_{i} \quad \text { both for } n \in \mathbb{N} .
$$

For $K_{n-1}<i \leq K_{n}$ let $\ell_{i}=1 /\left(2 k_{n}\right)$. So, there are $k_{n} \operatorname{arcs}$ of length $1 /\left(2 k_{n}\right)$.
c) Show that $\mathbb{P}(c \in S)=1$ for all $c \in C$, and that C will eventually be red almost everywhere (with respect to Lebesque measure on C).
\mathbf{d}^{*}) Show that $\mathbb{P}(C=S)<1$.
Hint: You may use the following approach:
Show that with positive probability, there is an infinite sequence of non-empty arcs $a_{1} \supset a_{2} \supset \cdots$ of respective lengths $1 /\left(2 k_{1}\right), 1 /\left(2 k_{2}\right), \cdots$, such that $a_{n} \cap\left(\cup_{i=1}^{K_{n}} I_{i}\right)=\emptyset$. You can do this by first showing that a_{1} exists with strictly postive probability and then condition on that a_{n} exists. Then split a_{n} in $k_{n+1} /\left(2 k_{n}\right)$ disjoint arcs of length $1 / k_{n+1}$, and show that with "desirable" probability at least one of those arcs does not contain any of the x_{i} for $i \leq K_{n+1}$.
You may use without further proof that there exists $z \in(0,1)$, such that out of any subset of j disjoint arcs of length $1 / k_{n+1}$ the probability that at least one of those arcs does not contain any of the x_{i} with $K_{n}<i \leq K_{n+1}$ is larger than $1-z^{-j}$ for all $n \in \mathbb{N}$.

